
Nanodiamond for Biomedical Applications

Ivan Rios-Mondragon

Dept. of Physics and Technology, and Dept. of Clinical Dentistry
University of Bergen

Introduction to Nanodiamonds

Kaur et. al., Int. J. Nanomedicine 2013

What are Nanodiamonds (NDs)?

- Carbon-based nanoparticles with unique optical and mechanical properties.
- Small size (2-10 nm) with diamond core structure.
- Nitrogen-vacancy (NV) centers enable optical and magnetic sensitivity.

Why NDs for Biomedical Applications?

- Biocompatibility, modifiable surfaces, stable fluorescence.
- Ideal for targeted drug delivery, bioimaging, and sensing.

Properties of Nanodiamonds

Key Properties

- Biocompatible and non-toxic for in vivo applications.
- Fluorescence without photobleaching due to nitrogen-vacancy (NV) centers.
- Surface functionalization for attaching drugs, proteins, and other biomolecules.

Advantages in Biomedicine

- High stability in physiological environments.
- Versatility in interacting with various biological molecules.
- Easy to integrate into different biomedical systems.

Drug Delivery Applications

NDs as Drug Carriers

- High surface area and functional groups allow effective drug loading.
- Controlled drug release to target specific cells or tissues.

Example Applications

- Cancer treatment: Delivery of doxorubicin directly to tumors.
- Gene delivery: Transport of nucleic acids with reduced degradation.

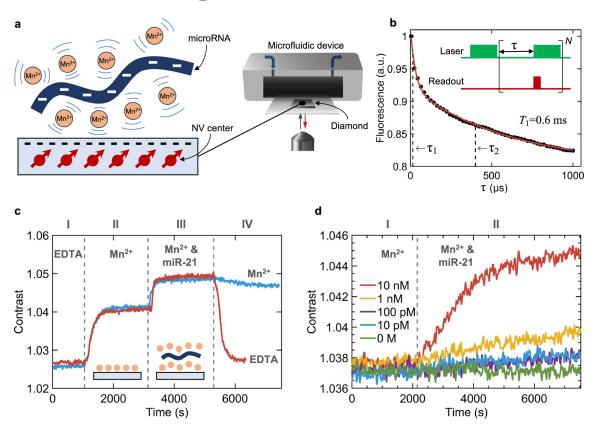
Benefits

- Enhanced bioavailability of drugs.
- Reduced side effects by targeted delivery.

Bioimaging and Diagnostics

Fluorescent Nanodiamonds (FNDs)

- NV centers provide bright, stable fluorescence.
- Resistant to photobleaching, ideal for long-term imaging.


Applications in Imaging

- Cellular imaging to monitor processes at the nanoscale.
- Diagnostic imaging for real-time tracking of biological molecules.

Quantum Sensing Potential

 Detect temperature, pH, magnetic and electric fields, and pressure at cellular levels.

Quantum sensing of miRNAs

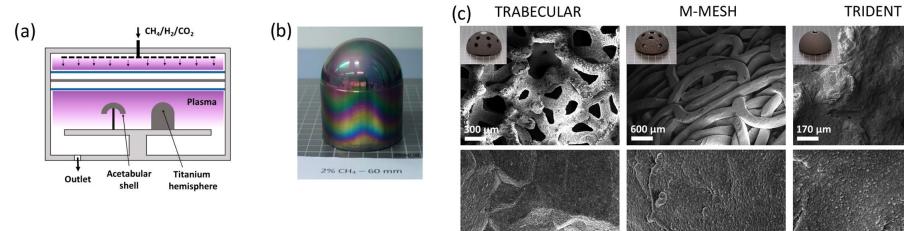
Tissue Engineering and Implant Coatings

NDs in Tissue Scaffolds

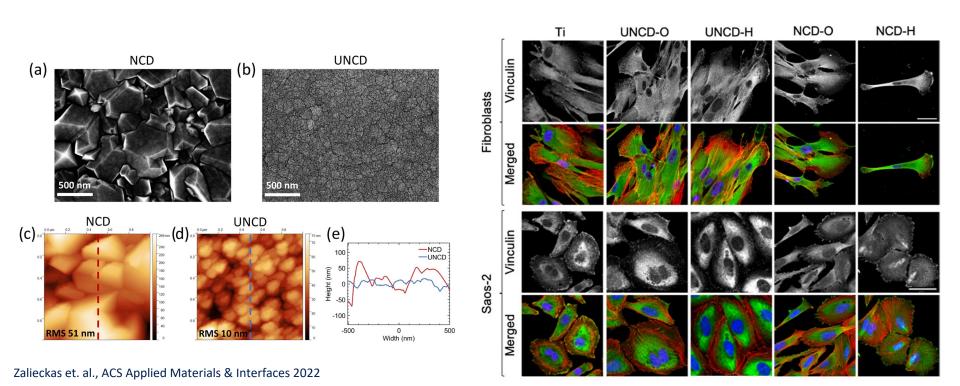
- Enhances scaffold strength and supports cell adhesion and growth.
- Encourages differentiation in bone and cartilage regeneration.

Coatings on Medical Implants

- Antimicrobial properties to reduce infection risk.
- Improves durability and biocompatibility for long-term implants.


Benefits for Tissue Engineering

Promotes healing and reduces inflammation in implantable devices.


Coating of implants with nanodiamond films

Coating of 3D objects by surface wave plasma chemical vapour deposition

Phys-chem properties of diamond films

Surface roughness and chemical termination can be tuned to control cell growth

Challenges and Limitations

Manufacturing and Scalability

- Need for consistent production with uniform properties.
- Challenges in scalable surface functionalization methods.

Biocompatibility and Safety

- Long-term toxicity studies and regulatory approvals required.
- Stability and accumulation in the body are concerns.

Device Integration and Cost

- Difficulty in maintaining ND properties within devices.
- High production costs hinder large-scale implementation.

Future Perspectives

Advances in ND Production

- Focus on cost-effective, scalable synthesis methods.
- Improved surface functionalization for precise targeting.

Potential Applications in Biomedicine

- Real-time diagnostics, neurotherapeutics, and theranostics.
- Integration in multi-functional devices for imaging and therapy.

Path to Clinical Translation

- Address safety and regulatory standards.
- Continued research into biocompatibility and clearance pathways.

Nanophysics Group

Dr. Justas Zalieckas **Lead researcher** justas.zalieckas@uib.no

Assoc. Prof. Martin Greve

Prof. Bodil Holst

Marit Hougen (PhD candidate)

Johannes Fiedler (Postdoctoral fellow)

Katharina Hauer (PhD candidate)

Swayamprakash Sahoo (PhD candidate)

Biomaterials Research Cluster

Prof. Mihaela R. Cimpan

Dr. Paul Johan Høl

Haukeland University Hospital

Prof. Geir Hallan

Prof. Ove N. Furnes

uib.no