

An Introduction to: GYROSCOPIC RADIOSURGERY PLATFORM

ITAPA HEALTH & CARE March 2023.

Hotel IMPOZANT, Valčianska dolina

David Miles, EIMEA

ZAP MOTIVATION

- Dr. Adler's Vision
 - Treat more patients in more places
 - 2 million a year!
 - Redefine the future of radiosurgery:
 a less challenging prospect, every
 day use intuitive and patient friendly
 - State-of-the-art machine
 - Aesthetically pleasing
 - Streamlined workflows
 - https://firstinmanfilm.com

SURGICAL and RADIOSURGICAL

- Clinical outcomes are equitable in numerous disease type categories, suitable for RS.
- Reduction of negative side effects of treatment often favor RS.
- Social effect on patients' wellbeing immediately after procedure considerably favors RS
- Cost of clinical procedure's significantly lower for RS.
- Selection of RS reduces surgical waiting times for treatments not suitable for RS.
- Social economic impact to patient and state vastly superior for RS.

RADIOSURGICAL Procedures

- Selected malignant cancers
- Selected benign cancers
- Selected metastatic cancers
- Vascular disorders
- Functional disorders
 - Trigeminal Neuralgia
 - Essential Tremor

Clinical Conditions for which Functional Radiosurgery Has Been Used (mainly GK)

Essentially any indication for which precision lesioning of the brain can produce the desired physiological effect

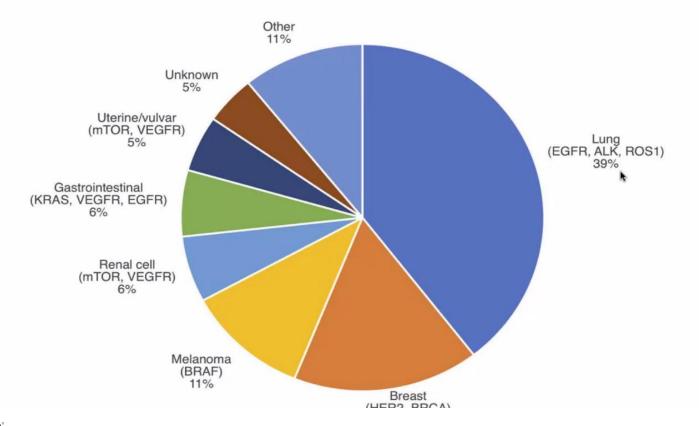
- Trigeminal neuralgia (70-90Gy TGN)
- Parkinsonian tremor (130Gy Gpi)
- Essential tremor (130Gy VIM)
- Dystonia (120Gy STN)
- Cancer pain (130Gy CMN or 160Gy Pituitary)
- Thalamic pain (130Gy VPN)
- Obsessive compulsive disorder (180Gy anterior capsule)
- Epilepsy

- hypothalamic hamartomas (~15Gy to hamartoma)
- mesial temporal sclerosis (40-48Gy amygdala)
- Sphenopalatine neuralgia (80Gy to SPG)
- Chronic cluster headaches (80Gy to SPG or TGN)

Incidence of brain metastasis is increasing

Incidence of brain metastasis is increasing¹:

- Improvements in imaging (e.g. MRI)
- Clinical trial screening
- Improvements in systemic cancer control (brain is a sanctuary site)
- Rates of brain metastasis may be influenced by changing treatments
 - 25% of lung cancer patients have brain metastasis at initial presentation
 - 80% of lung cancer patients surviving >2 years will develop brain metastases


Brain metastases may be underdiagnosed

- Autopsy results reveal brain metastases that were not diagnosed clinically²
- Clinical trial screening reveals patients with asymptomatic brain metastases¹

The Impact of Targeted Therapy on Intracranial Metastatic Disease Incidence and Survival

Anders W. Erickson 1 and Sunit Das 2,3*

¹ Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, ² Division of Neurosurgery, University of Toronto, Toronto, ON, Canada, ³ Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada

Frontiers in Oncology

Disease group	N (% of all cancers)	N (%) with IMD	Median (IQR) time until brain met (months)	1-yr all cause mortality	Median (IQR) time until death since brain met
Lung and bronchus	77,613 (12.9%)	15,193 (19.6%)	2.1 (0.2, 7.5)	55%	1.7 (0.5, 3.9)
Breast	87,233 (14.5%)	2,686 (3.1%)*	22.8 (10.9, 40.5)	4.3%	4.6 (1.6, 12.5)
Colorectal	66048 (11.0%)	919 (1.4%)	16.6 (3.9, 34.8)	20.2@	2.5 (1.2, 6.2)
Melanoma	24,650 (4.1%)	1,581 (6.4%)*	11.7 (2.1, 26.6)	8.2%	3.4 (1.3, 8.7)
Kidney	18,237 (3%)	765 (4.2%)*	7.2 (1.0, 22.0)	16.5%	4.1 (1.6, 11.8)

Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial

Paul D Brown, Karla V Ballman, Jane H Cerhan, S Keith Anderson, Xiomara W Carrero, Anthony C Whitton, Jeffrey Greenspoon, Ian F Parney, Nadia N I Laack, Jonathan B Ashman, Jean-Paul Bahary, Costas G Hadjipanayis, James J Urbanic, Fred G Barker II, Elana Farace, Deepak Khuntia, Caterina Giannini, Jan C Buckner, Evanthia Galanis, David Roberge

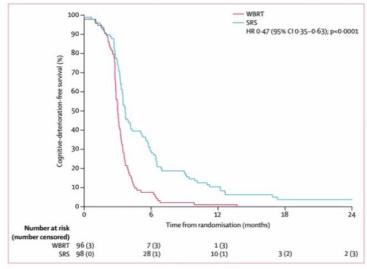


Figure 2: Cognitive-deterioration-free survival WBRT=whole brain radiotherapy. SRS=stereotactic radiosurgery

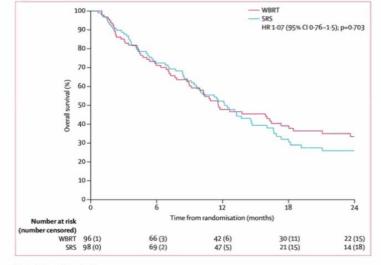
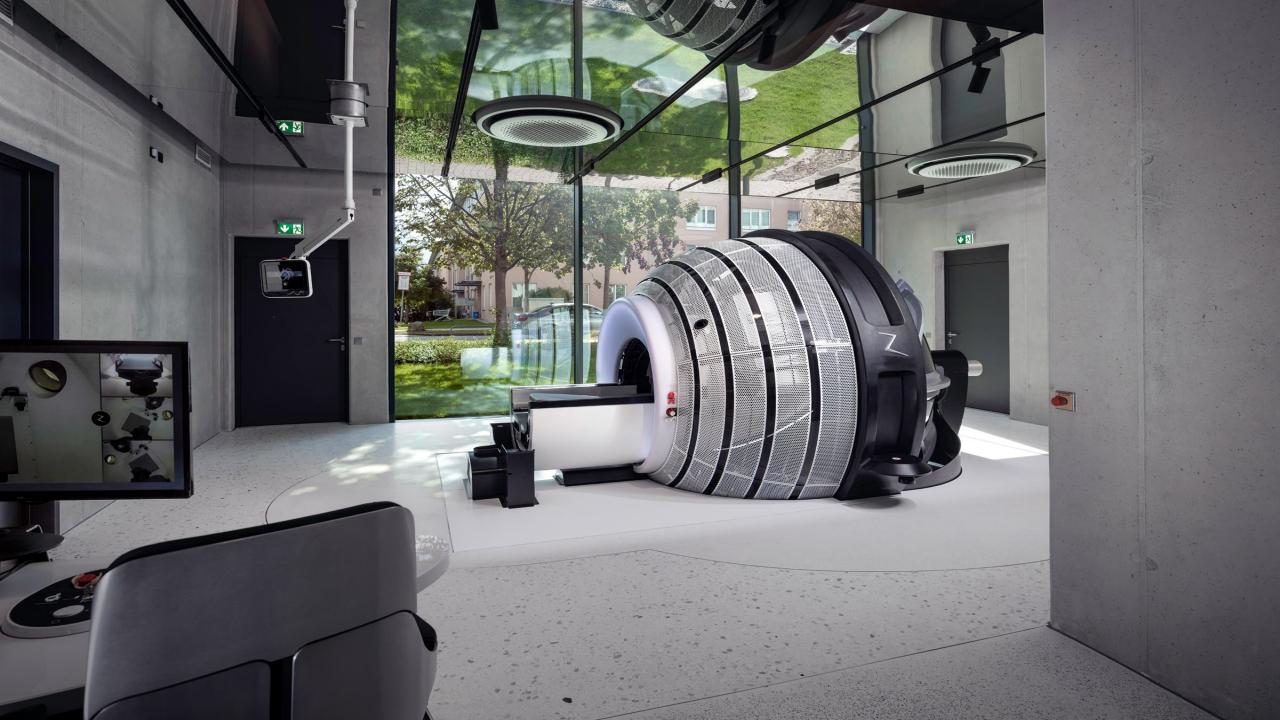


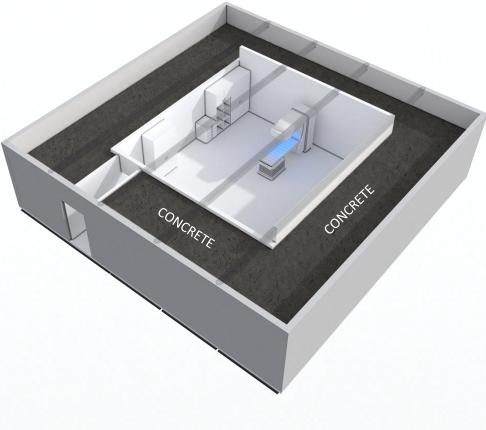
Figure 3: Overall survival

WBRT=whole brain radiotherapy. SRS=stereotactic radiosurgery.


	SRS (n=54)	WBRT (n=48)	Mean difference (95% CI)	p value
HVLT-R Immediate Recall				
Deterioration	9 (17%)	23 (49%)		
Non-deterioration	45 (83%)	24 (51%)	32-3 (20 to 44-5)	0.00062
Test not attempted	0	1	200	
HVLT-R Delayed Recall				
Deterioration	14 (26%)	29 (62%)		**
Non-deterioration	39 (74%)	18 (38%)	35-3 (22-5 to 48-1)	0.00054
Test not attempted	1	1		
HVLT-R Recognition				
Deterioration	10 (19%)	16 (36%)		
Non-deterioration	43 (81%)	29 (64%)	16-7 (4-6 to 28-8)	0.0707
Test not attempted	1	3		**
TMT-A time to complete				
Deterioration	9 (17%)	18 (38%)		**
Non-deterioration	45 (83%)	29 (62%)	21-6 (9-6 to 33-6)	0.0233
Test not attempted	0	1	**	No.
TMT-B time to complete				
Deterioration	10 (19%)	19 (42%)		**
Non-deterioration	43 (81%)	26 (58%)	23-4 (11 to 35-7)	0.0149
Test not attempted	1	3		**
COWAT total				
Deterioration	4 (7%)	7 (15%)	**	***
Non-deterioration	50 (93%)	39 (85%)	7-8 (-0-9 to 16-5)	0.3368
Test not attempted	0	2	-	**
Overall outcome for cognitive	ve deterioration			
Deterioration	28 (52%)	41 (85%)	-33-6 (-45-3 to -21-8)	
Non-deterioration	26 (48%)	7 (15%)	**	0.00031

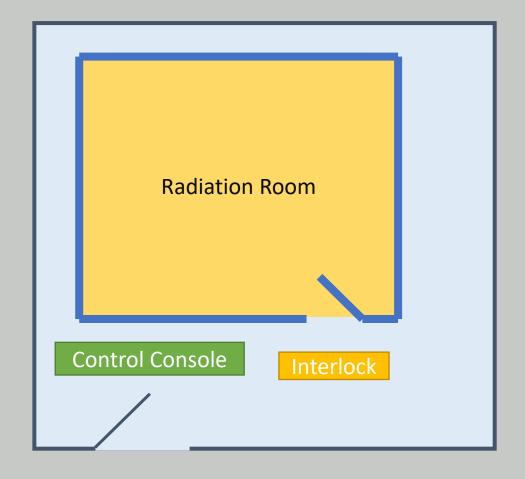
We defined cognitive deterioration as a drop of 1 SD in score from baseline. There are missing values for some cognitive tests, as reflected by total number of a particular test being less than the total number of patients, p values were calculated with Fisher's exact test. WBRT=whole brain radiotherapy. SRS=stereotactic radiosurgery. HVLT-R=Hopkins Verbal Learning Test—Revised. TMT-A=Trail Making Test part A. TMT-B=Trail Making Test part B. COWAT=Controlled Oral Word Association Test.

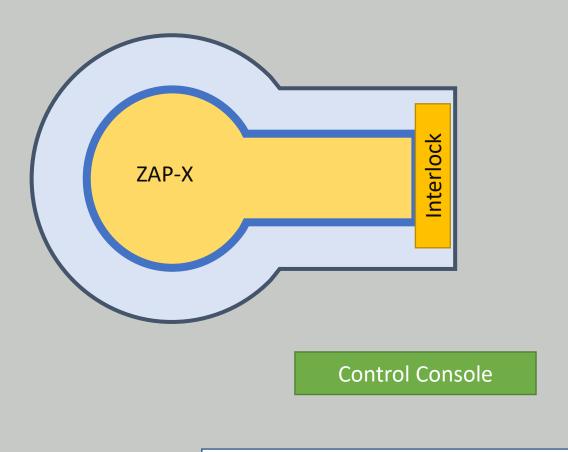
Table 2: Cognitive deterioration at 6 months



THIS IS NEXT THE GENERATION. ZAP-X GYROSCOPIC RADIOSURGERY.

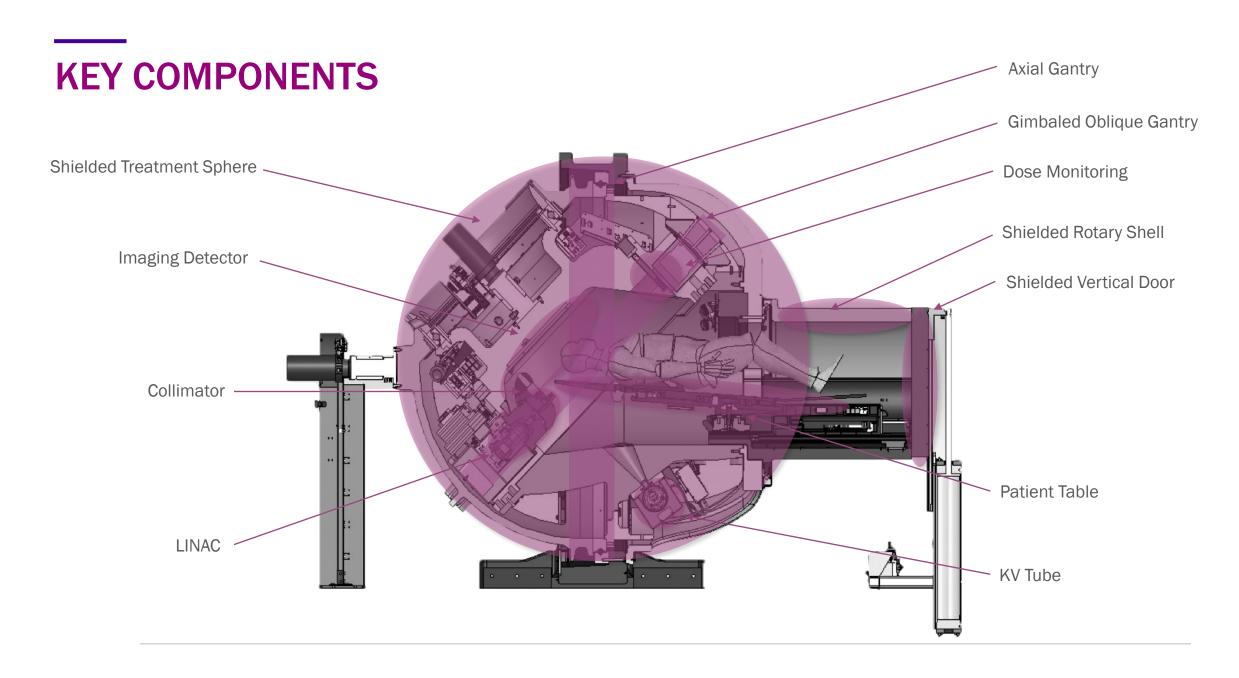
RadiationShielding




Multi-Purpose Gantry LINAC

Requires costly shielded radiation vaults in all instances. Comprised of >3M lbs. of high-density concrete and steel with a carbon footprint equivalent to the lifetime of \sim 300 automobiles.

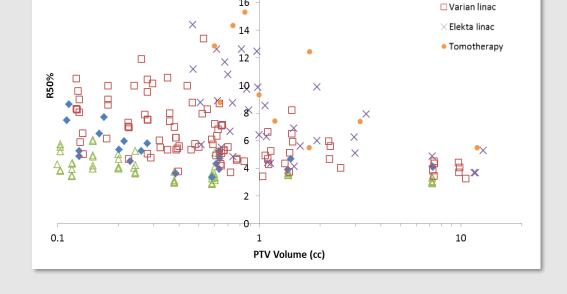
Typical Treatment Vault


Integrated System Shielding

High Radiation

Controlled Area

Public Area


NHS RTTQA PROGRAM

- Report commissioned by the UK's NHS
- Objective:
 - Understand significant variations in outcomes across 21 hospitals
- Methodology:
 - Based on 6 benchmark cases, each site evaluated for contouring, planning and treatment delivery quality
- The largest device comparison study ever

CASE #2

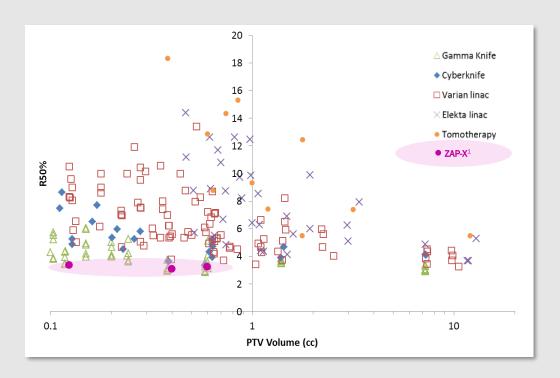
- The R_{50%}
 - Combines selectivity (absence of dose spillage) with gradient
 - Volume of 50% of prescription dose Volume of target

△ Gamma Knife

Cyberknife

20

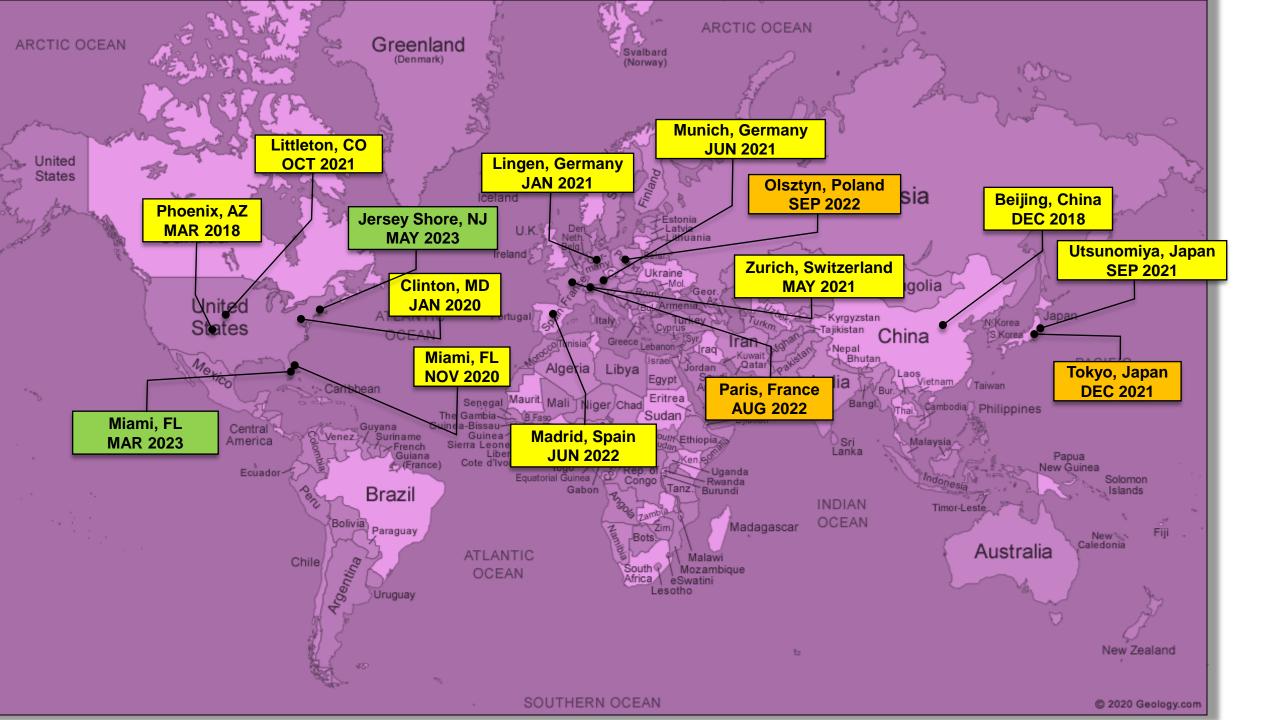
18


CASE #2

- The R_{50%}
 - Combines selectivity (absence of dose spillage) with gradient
 - Volume of 50% of prescription dose
 Volume of target

1. Planned retrospectively; not included in the original RTTQA report. Data presented by lan Paddick, MSc, September 10, 2020; https://www.youtube.com/watch?v=6MupRYxzMpg

Confidential - not for distribution


ZAP-X Gyroscopic Radiosurgery

Who are we and where are first users around the world.

ZAP SURGICAL SYSTEMS, INC.

- Founded in 2014 by John Adler, MD
 - Professor of Neurosurgery, Stanford University
 - Inventor of the CyberKnife®
 - Former CMO of Varian
- Funded by Varian, Foxconn, and others
- Headquartered in Silicon Valley, CA

12 sites treating (15 soon)

+1420 fractions treated

ZAP-X designed from concept to bridge the gap between to day's shortfall of patients and tomorrow increasing need.

THANK YOU and Questions