

# Effectiveness of AI Solution to Analyze CT for Screening Patients with Emergent Large Vessel Occlusion

Non-contrast CT based AI solution for LVO triage and notification

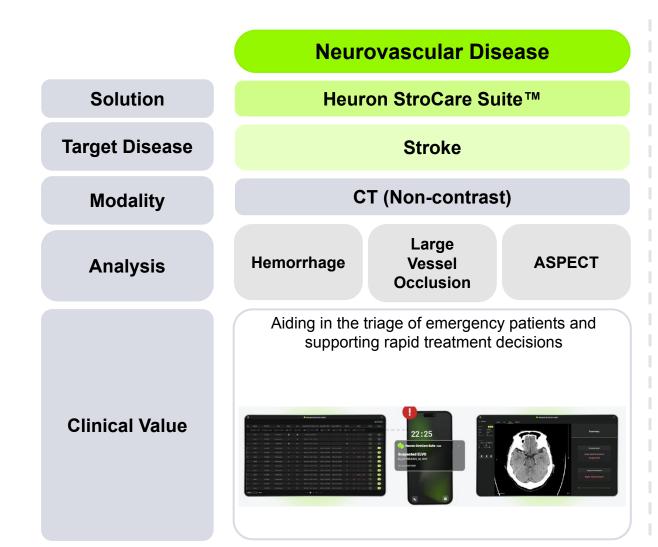
Dong Hoon Shin, MD, Ph.D CEO of Heuron Co., Ltd.

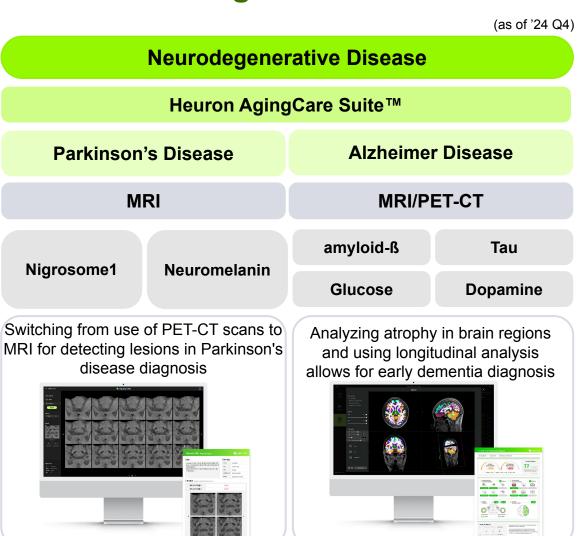
Brain New Life, Together.

## Brain New Life, Together

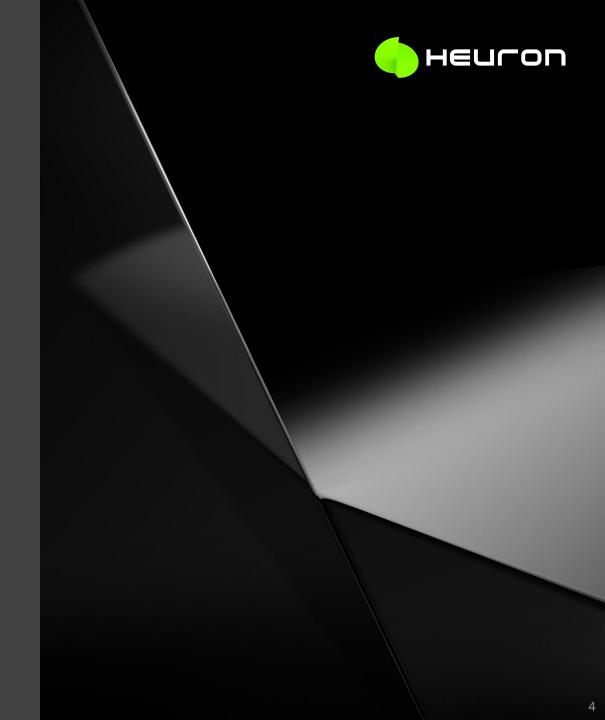


We lead in high-barrier neuroscience diagnostics, dedicated to rapidly diagnosing brain diseases through AI technology to uphold the dignity of patients and society.




#### Heuron's Solution




Heuron's solution reduces barriers to healthcare, addressing everything from acute brain disorders to degenerative neurological conditions.





# Heuron SCS<sup>TM</sup>



## Why stroke?



#### The problem at hand

### Once lost, recovering the brain is incredibly challenging

6.3 hours

The average time consumption from the first abnormal symptom detection to a hospital arrival in South Korea

2nd lethal

Leading cause of death, 6.6 million died globally in 2019 160<sup>M</sup> DALYs

The sum of years lost due to premature death and years lived with disability in 2021 worldwide

101<sub>M</sub> aftermath

The number of people living with the stroke aftermath in global

## Every second counts!!

#### Stroke in Slovakia



12,675

Incidence


In 2021

106,246

Prevalence

In 2021

#### Risk factors and mortality rates of Slovakia and EU average



Low physical activity - Slovakia: 2% EU:

Estimated increase 2015-2035



Incidence 53%



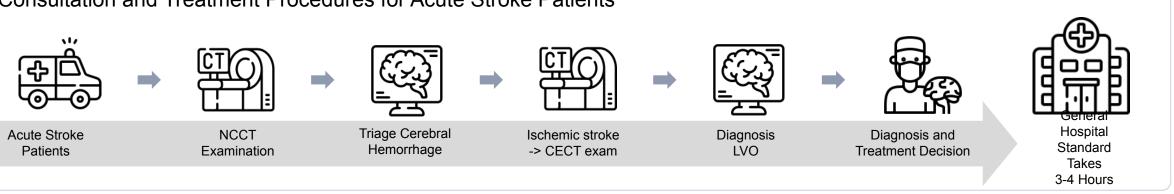
Prevalence 36%



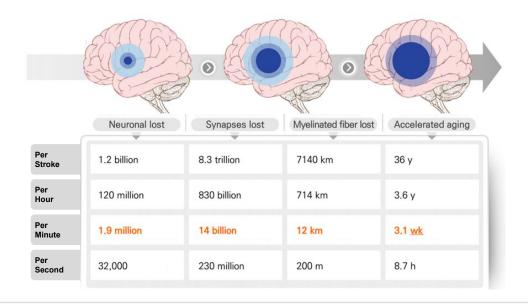
Dealths 77%

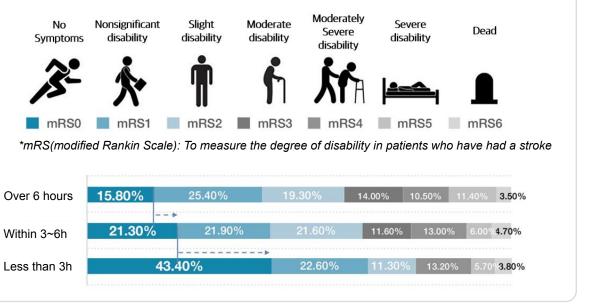


DALYs Lost 52%


Source: 1) Institute for Health Metrics and Evaluation GBD 2021 2) The Burden of Stroke in Europe report conducted by King's College London for the Stroke Alliance for Europe

#### Time is Brain

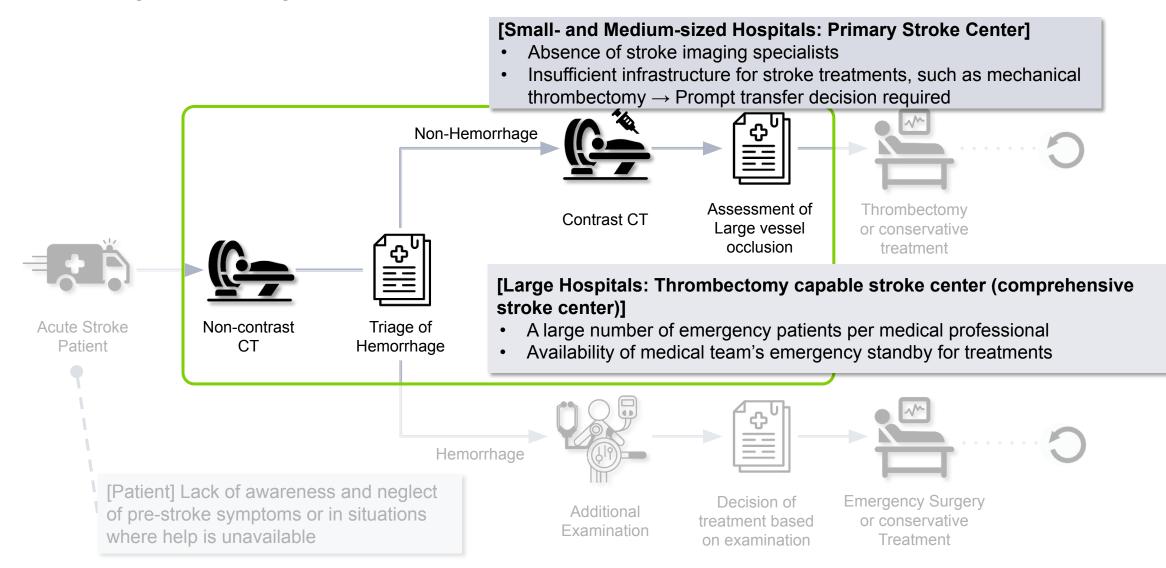

Stroke Treatment 'Golden Hour'




#### Consultation and Treatment Procedures for Acute Stroke Patients



#### Brain Damage and Prognosis According to the Time Elapsed After Acute Stroke Onset






## Key Time-Consuming Challenges in Stroke Centers



Solutions for Reducing Time-Consuming Points



## Heuron StroCare Suite<sup>TM</sup>

Rapid Notification for Stroke Patient Treatment





**Heuron ICH** 

**Heuron ELVO** 

**Heuron ASPECTS** 

FDA 510(k) cleared

### Heuron StroCare Suite<sup>TM</sup>

MMS/어플리케이션을 통한 응급 환자 분석 결과 및 알람 시스템



#### **Notification**

Get immediate notifies on critical findings



#### Worklist

Can access real-time worklist & patient transfer in/out tagging



#### **Viewer**

Can easily switch original and result images in the viewer



#### Share/Save/Message

Can share or save images & closed network message function

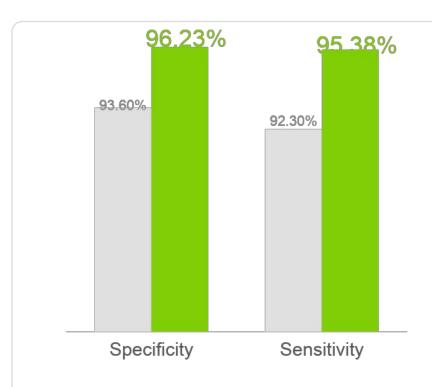








#### Heuron ICH




Training Dataset & Clinical Trial for MFDS clearance

|              | Training Data-set |                              |                              |
|--------------|-------------------|------------------------------|------------------------------|
|              | Total             | Positive cases of hemorrhage | Negative cases of hemorrhage |
| Patient-wise | 21,816            | 8,920                        | 12,896                       |
| Slice-wise   | 749,590           | 107,454                      | 642,136                      |

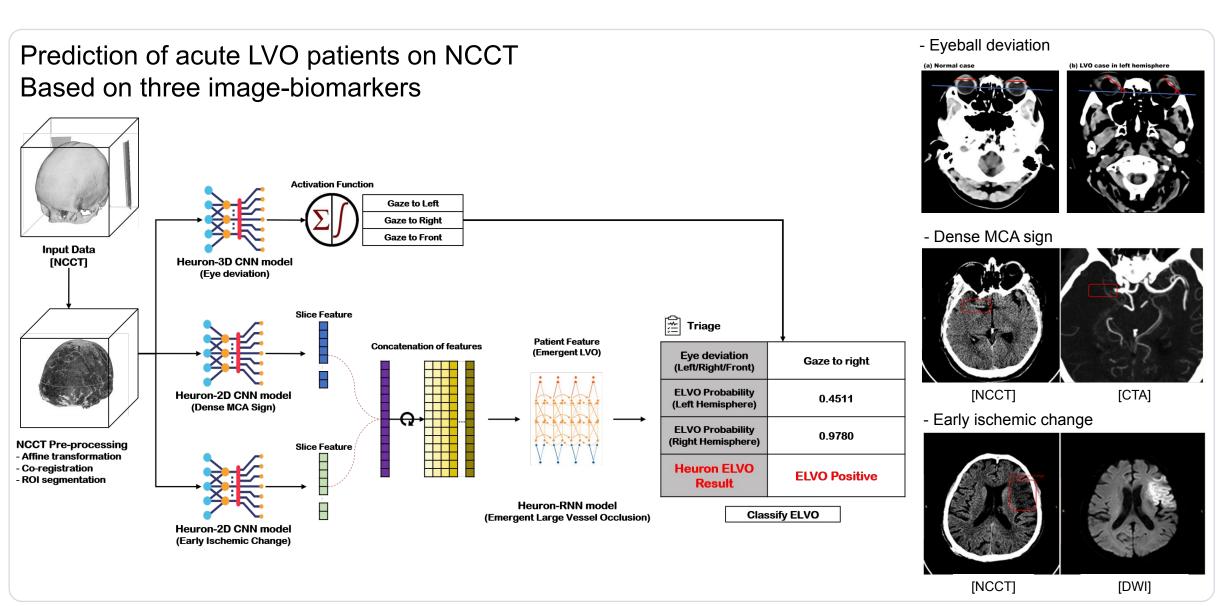
| Clinical Test Data-set (patient-wise) |                              |                              |  |  |
|---------------------------------------|------------------------------|------------------------------|--|--|
| Total                                 | Positive cases of hemorrhage | Negative cases of hemorrhage |  |  |
| 236                                   | 106                          | 130                          |  |  |

- Study design: Open Label, Single-center, Retrospective, Pivotal Trial
- Reference Standard:
   Two neurologists reviewed blinded brain CT images and established a reference standard based on the hemorrhagic stroke diagnostic criteria
  - Presence of hemorrhagic stroke
     Subtypes of hemorrhagic stroke, if diagnosed with (intracerebral,
     intraventricular, subarachnoid, epidural, subdural)
     The number of CT slices where hemorrhage is confirmed, if diagnosed with



Primary Endpoint:Heuron ICH: Sensitivity & Specificity

- PPV: 94.4%


- NPV: 96.87%

- Accuracy : 95.76%

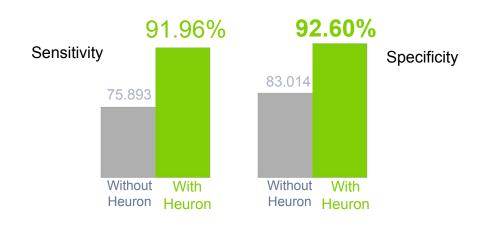
#### **Heuron ELVO**

LVO prediction model structure





#### Heuron ELVO






#### Clinical Trial for MFDS clearance – A Pivotal clinical trial in single center

| Clinical Data-set (Patient-wise) |                        |                       |  |  |  |
|----------------------------------|------------------------|-----------------------|--|--|--|
| Total                            | Positive cases of LVO* | Negative cases of LVO |  |  |  |
| 477                              | 112                    | 365                   |  |  |  |

- ☐ Study design: Open Label, Single-center, Retrospective, Pivotal Trial
- ☐ Total 477 cases (Positive ELVO cases: 112, Negative cases: 365)
- ☐ Reference standard: Two stroke experts provided reference standard using medical records with diagnosed code
- ☐ Primary Endpoint: Statistical difference in sensitivity and specificity when only visual interpretation of non-contrast CT and when referring to AI analysis results



|                     | Sensitivity %             | Sensitivity % Specificity % |                  |
|---------------------|---------------------------|-----------------------------|------------------|
| ELVO classification | (TP/TP+FN) [95% CI]       | (TN/TN+FP) [95% CI]         | AUROC [95% CI]   |
| Standalone          | 88.4 (99/112) [81.0–93.7] | 91.2 (333/365) [87.9–93.9]  | 0.93 [0.90-0.96] |

|                | Sen                 | sitivity (TP/TP-     | FN)      | S                   | pecificity (TN/TN    | +FP)     |                     | AUROC                |         |
|----------------|---------------------|----------------------|----------|---------------------|----------------------|----------|---------------------|----------------------|---------|
| Consensus lev  | el analysis         |                      |          |                     |                      |          |                     |                      |         |
|                | Unassisted<br>stage | AI-assisted<br>stage | p value  | Unassisted<br>stage | AI-assisted<br>stage | p value  | Unassisted<br>stage | AI-assisted<br>stage | p value |
| 0/ 1050/ CH    |                     | 92.0 (103/112),      |          | 83.0 (303/365),     | 92.6 (338/365),      |          | 0.87,†              | 0.95,†               | 0.04    |
| %, [95% CI]    | [66.9–83.7]         | [85.3–96.3]          | 0.0009   | [78.8–86.7]         | [89.4–95.1]          | <0.0001  | [0.83-0.90]         | [0.92-0.97]          | 0.04    |
| ndividual lev  | el analysis %,      | [95% CI]             |          |                     |                      |          |                     |                      |         |
| Reader 1       | 68.8 (77/112),      | 90.2 (101/112),      | <0.0001  | 85.5 (312/365),     | 92.1 (336/365),      | 0.002    | 0.84,†              | 0.96,†               | 0.02    |
| Keauer 1       | [59.3–77.2]         | [83.1–95.0]          | <0.0001  | [81.4–88.9]         | [88.8–94.6]          | 0.002    | [0.79-0.88]         | [0.94-0.98]          |         |
| B 1 4          | 58.0 (65/112),      | 81.3 (91/112),       | //       | 89.86 (328/365),    | 93.97 (343/365),     | 0.04     | 0.83,†              | 0.95,†               | 0.02    |
| Reader 2       | [48.3–67.3]         | [72.8-88.0]          | <0.0001  | [86.3–92.8]         | [91.0–96.2]          |          | [0.78-0.87]         | [0.92-0.97]          |         |
|                | 85.7 (96/112),      | 79.5 (89/112),       | 0.24     | 46.6 (170/365),     | 92.9 (339/365),      |          | 0.82,†              | 0.91,†               | 0.11    |
| Reader 3       | [77.8–91.6]         | [70.8–86.5]          | 0.26     | [41.4–51.8]         | [89.7–95.3]          | <0.0001  | [0.78-0.86]         | [0.86-0.94]          |         |
|                | 57.1 (64/112),      | 74.1 (83/112),       | 0.0000   | 66.9 (244/365),     | 90.7 (331/365),      |          | 0.78,†              | 0.92,†               | 0.02    |
| Reader 4       | [47.5–66.5]         | [65.0-81.9]          | 0.0009   | [61.8–71.7]         | [87.2–93.5]          | < 0.0001 | [0.73-0.83]         | [0.88-0.94]          |         |
| nterrater reli | ability of agree    | ement                |          |                     |                      |          |                     |                      |         |
| Fleiss' k      | appa                |                      | Unassis  | ted stage           |                      |          | AI-assisted         | stage                |         |
| к [95%         | CI]                 |                      | 0.27 [0. | 26-0.28]            |                      |          | 0.75 [0.74-         | -0.76]               |         |

#### Performance of ASPECTS scoring system in ER

HEUCON

J NeuroIntervent Surg

#### **Objective**

To develop and validate an automated ASPECTS scoring system using deep learning algorithm.

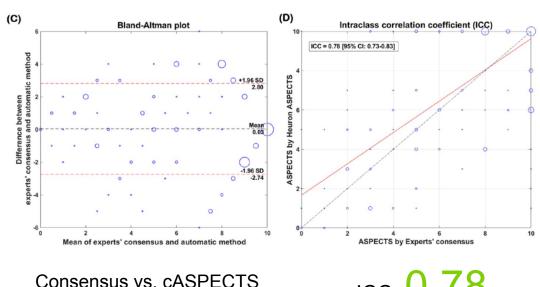
#### Validation dataset

- Randomized data selection was performed in patients aged ≥19 years with thrombolysis code activation in ER
- final diagnosis of AIS was confirmed using diffusion-weighted MRI
- NCCT slice thickness varied from 3 to 5 mm



#### ASPECTS reference standard with NCCT

2 experts with ≥ 10 years of clinical experience


(if the results were different, it determined by consensus between the 2 experts)



#### In conclusion,

Heuron ASPECTS effectively measured ASPECTS in patients with suspected ischemic stroke on NCCT scans and suggesting the potential usefulness of DL algorithm software in aiding physicians in stroke patient care.

#### Performance of Heuron ASPECTS, which was the degree of agreement with the reference standard



Consensus vs. cASPECTS

Mean diff. < 0.35 = 0.032

Good-to-Excellent Agreement

#### Heuron SCS





#### External Validation – more than 6 institutions (4 different vendors' CT scanner included)

| Validation data-set (I | Patient-wise)         |                        |                               |
|------------------------|-----------------------|------------------------|-------------------------------|
| Total                  | Positive cases of ICH | Positive cases of LVO* | Negative cases of ICH or LVO* |
| 2,808                  | 973                   | 502                    | 1,333                         |

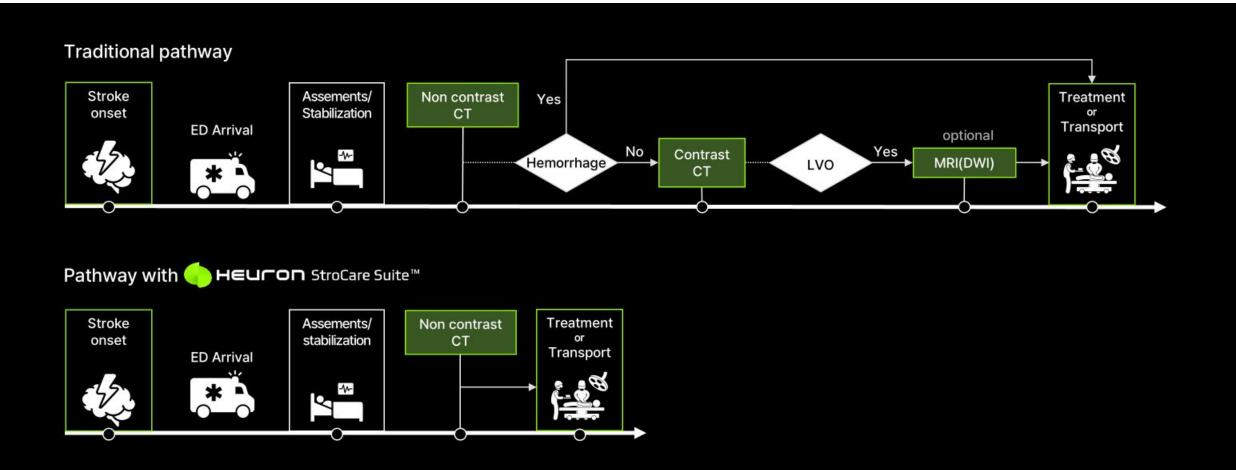
<sup>\*</sup>Proximal anterior circulation only – ICA to MCA-M1/M2 bifurcation

#### Heuron ICH performance

# ICH positive 925 19 ICH negative Prediction 48 1,816

#### Heuron ELVO performance

|                            | GT-LVO positive | GT-LVO negative |
|----------------------------|-----------------|-----------------|
| LVO positive<br>Prediction | 411             | 137             |
| LVO negative<br>Prediction | 93              | 2,167           |


- Sensitivity: 95.07% [95% CI: 93.51 to 96.34%]
- Specificity: 98.96% [95% CI: 98.39 to 99.38%]
- □ Positive prediction value: 97.99% [95% CI: 96.89 to 98.70%]
- □ Negative prediction value: 97.42% [95% CI: 96.63 to 98.03%]
- □ Accuracy: 97.61% [95% CI: 96.98 to 98.15%]

- ☐ Sensitivity: 81.55% [95% CI: 77.88 to 84.84%]
- ☐ Specificity: 94.05% [95% CI: 93.01 to 94.98%]
- □ Positive prediction value: 75.00% [95% CI: 71.73 to 78.01%]
- □ Negative prediction value: 95.88% [95% CI: 95.10 to 96.55%]
- Accuracy: 91.81% [95% CI: 90.73 to 92.80%]

## Heuron StroCare Suite™: Faster triage, prompt actions



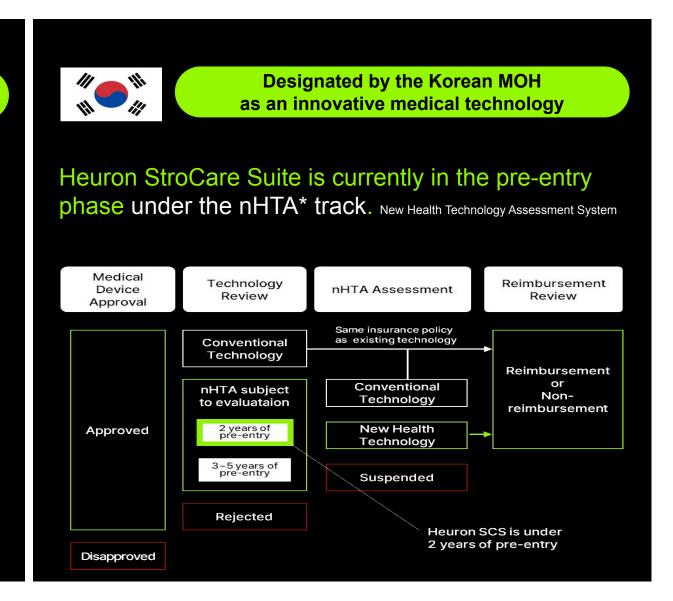
#### Reduce treatment initiation time with shorter process



## Heuron StroCare Suite<sup>TM</sup>: Proven and market ready



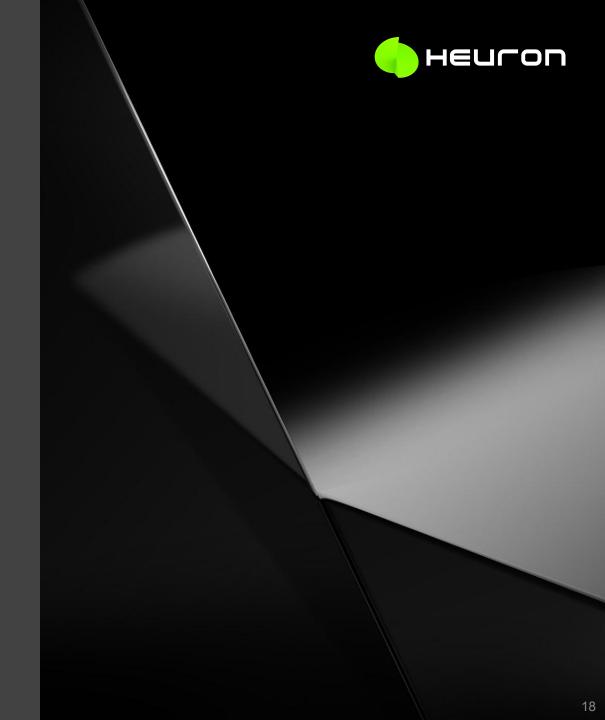



First FDA-Approved Korean Al solution for triage and notification

#### Heuron ICH – FDA 510(K) Cleared

Detects and triages suspected hemorrhages to prioritize emergency patients.

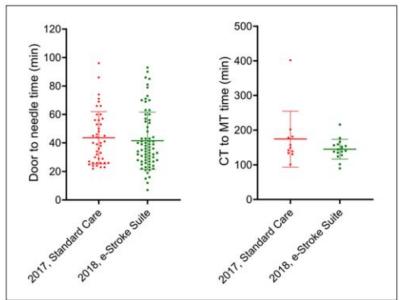


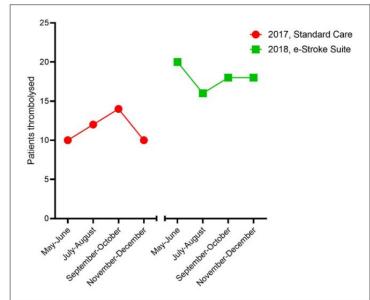


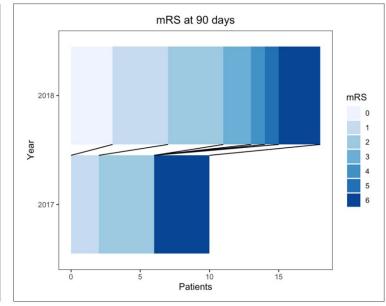



03

## Clinical Application


Real-World Evidence





## Previous publication in LVO triage based on AI solution



Cerebrovasc Dis Extra, 2022 – Brainomix e-Stroke Suite (CTA)







**Fig. 1.** Treatment times for patients in consecutive years for thrombolysis (left) and MT (right).

**Fig. 2.** Thrombolysis treatment rates over 2-month periods during 2017 and 2018.

Fig. 3. mRS distributions at 90 days following stroke in the MT cohort.

- Data was collected for 7 months in 2017 and 2018 to compare the effects before and after utilizing AI solutions.
- CT-to-groin puncture time decreased by 16% from 174±80.5 minutes in 2017 to 145±28 minutes in 2018.
- The number of cases in which mechanical thrombectomy was performed increased from 11 cases in 2017 to 19 cases in 2018.
- The number of patients with an mRS score (at 90 days) of '0' increased from 2 (18%) cases in 2017 to 7 (37%) cases in 2018.

## Previous publication in LVO triage based on AI solution



**|** HEUCOI

JAMA Neurology | Original Investigation

## Automated Large Vessel Occlusion Detection Software and Thrombectomy Treatment Times

A Cluster Randomized Clinical Trial

JAMA Neurology, 2023 - Viz.ai CTA

Juan Carlos Martinez-Gutierrez, MD; Youngran Kim, PhD; Sergio Salazar-Marioni, MD; Muhammad Bilal Tariq, MD; Rania Abdelkhaleq, MPH; Arash Niktabe, DO; Anjan N. Ballekere, MS; Ananya S. Iyyangar, BS; Mai Le, BS; Hussain Azeem, BS; Charles C. Miller, PhD; Jon E. Tyson, MD, MPH; Sandi Shaw, RN; Peri Smith, RN; Mallory Cowan, RN; Isabel Gonzales, RN; Louise D. McCullough, MD, PhD; Andrew D. Barreto, MD; Luca Giancardo, PhD; Sunil A. Sheth, MD

| Table 1 | . Patient | Demogra | phics |
|---------|-----------|---------|-------|
|         |           |         |       |

| Characteristic                                           | Total cohort (n = 243),<br>No. (%) | Pre-Al (n = 140),<br>No. (%) | Post-Al (n = 103),<br>No. (%) | P value |
|----------------------------------------------------------|------------------------------------|------------------------------|-------------------------------|---------|
| Age, y, median (IQR)                                     | 70 (58-79)                         | 69.5 (58.5-78)               | 71 (57-79)                    | .68     |
| Sex                                                      |                                    |                              |                               |         |
| Female                                                   | 122 (50)                           | 73 (52)                      | 49 (48)                       | 40      |
| Male                                                     | 121 (50)                           | 67 (48)                      | 54 (52)                       | 48      |
| Last known well to hospital arrival, min, median (IQR)   | 132 (61-498)                       | 131.5 (61-472)               | 147 (65-569)                  | .60     |
| NIHSS score                                              | 17 (11-22)                         | 17 (11-23)                   | 16 (11-21)                    | .19     |
| RACE score ≥5                                            | 187 (77)                           | 110 (79)                     | 77 (75)                       | .49     |
| CT ASPECTS                                               | 9 (7-10)                           | 9 (7-10)                     | 10 (8-10)                     | .04     |
| IV tPA                                                   | 111 (46)                           | 63 (45)                      | 48 (47)                       | .80     |
| Occlusion location                                       |                                    |                              |                               |         |
| Internal carotid artery                                  | 42 (17)                            | 29 (21)                      | 13 (13)                       |         |
| M1 middle cerebral artery                                | 111 (46)                           | 56 (40)                      | 55 (53)                       |         |
| M2 middle cerebral artery                                | 51 (21)                            | 29 (21)                      | 22 (21)                       | -       |
| Basilar artery                                           | 11 (5)                             | 9 (6)                        | 2 (2)                         |         |
| Cervical internal carotid artery and tandem intracranial | 9 (4)                              | 4 (3)                        | 5 (5)                         | .11     |
| Posterior cerebral artery                                | 5 (2)                              | 2 (1)                        | 3 (3)                         |         |
| Vertebral artery                                         | 3 (1)                              | 3 (2)                        | 0 (0)                         |         |
| Other                                                    | 11 (5)                             | 8 (6)                        | 3 (3)                         |         |

| Characteristic                                        | Total cohort (n = 243),<br>No. (%) | Pre-Al (n = 140),<br>No. (%) | Post-Al (n = 103),<br>No. (%) | P value |
|-------------------------------------------------------|------------------------------------|------------------------------|-------------------------------|---------|
| DTG time, min (IQR)                                   | 97 (75-113)                        | 100 (81-116)                 | 88 (65-110)                   | .002    |
| Hospital arrival to IV tPA<br>bolus time, min (IQR)   | 30 (21-41)                         | 30 (22-44)                   | 28 (21-36)                    | .14     |
| Initiation of CT scan to<br>EVT start time, min (IQR) | 80 (60-96)                         | 85 (68-99)                   | 72 (55-90)                    | <.001   |
| Length of stay, d (IQR)                               | 7 (4-11)                           | 7 (4-12)                     | 6 (3-10)                      | .11     |
| TICI 2b/3 reperfusion                                 | 219 (90)                           | 124 (89)                     | 95 (92)                       | .34     |
| Safety outcomes                                       |                                    |                              |                               |         |
| Symptomatic ICH                                       | 9 (4)                              | 7 (5)                        | 2 (2)                         | .21     |
| Any ICH                                               | 43 (18)                            | 24 (17)                      | 19 (18)                       | .81     |

44 (31)

13 (13)

Abbreviations: AI, artificial intelligence; CT, computed tomography; DTG, door to groin; EVT, endovascular stroke therapy; ICH, intracerebral hemorrhage; IV tPA, intravenous tissue plasminogen activator; TICI, thrombolysis in cerebral infarction.

#### Table 3. Mixed-Model Stepped-Wedge Outcomes<sup>a</sup>

Mortality

| Characteristic                               | Coefficient (95% CI)   | P value |
|----------------------------------------------|------------------------|---------|
| Primary outcome                              |                        |         |
| DTG time, min                                | -11.2 (-18.22 to -4.2) | <.01    |
| Secondary outcomes                           |                        |         |
| Initiation of CT scan to EVT start time, min | -9.8 (-16.9 to -2.6)   | <.01    |
| Hospital arrival to IV tPA bolus time, min   | -3.5 (-9.1 to 2.2)     | .23     |
| Length of stay, d                            | -0.4 (-2.6 to 1.7)     | .72     |

57 (23)

Abbrevations: CT, computed tomography; DTG, door to groin; EVT, endovascular stroke therapy; IV tPA, intravenous tissue plasminogen activator.

#### Significantly reduced metrics

- Door-to-groin (DTG) time: 11.2 mins↓
- CT-to-EVT time: 9.8 mins ↓

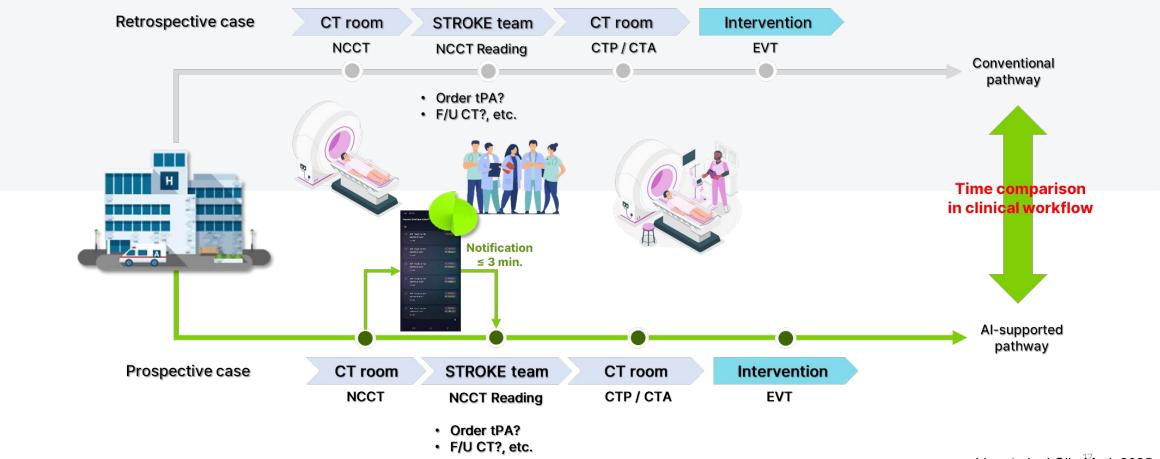
<.001

☐ Ratio of mortality reduced significantly

<sup>&</sup>lt;sup>a</sup> Regressions adjusted for age, sex, and National Institutes of Health Stroke Scale score.

#### Reduction Treatment Time for Stroke Patients in ER

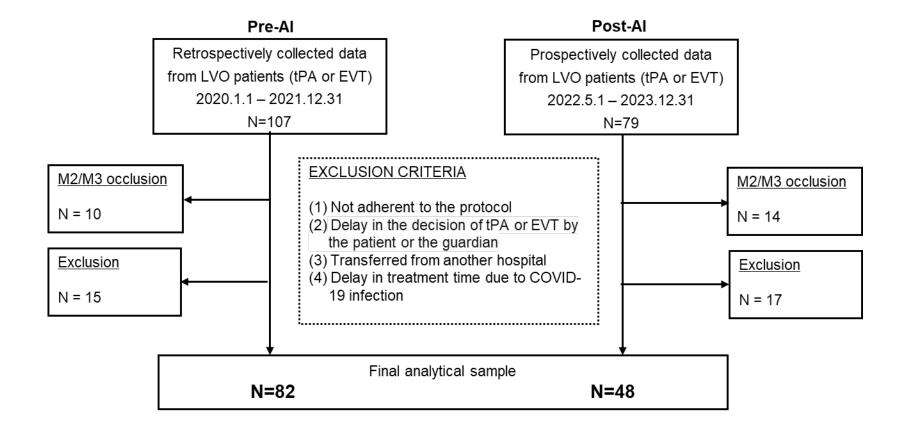


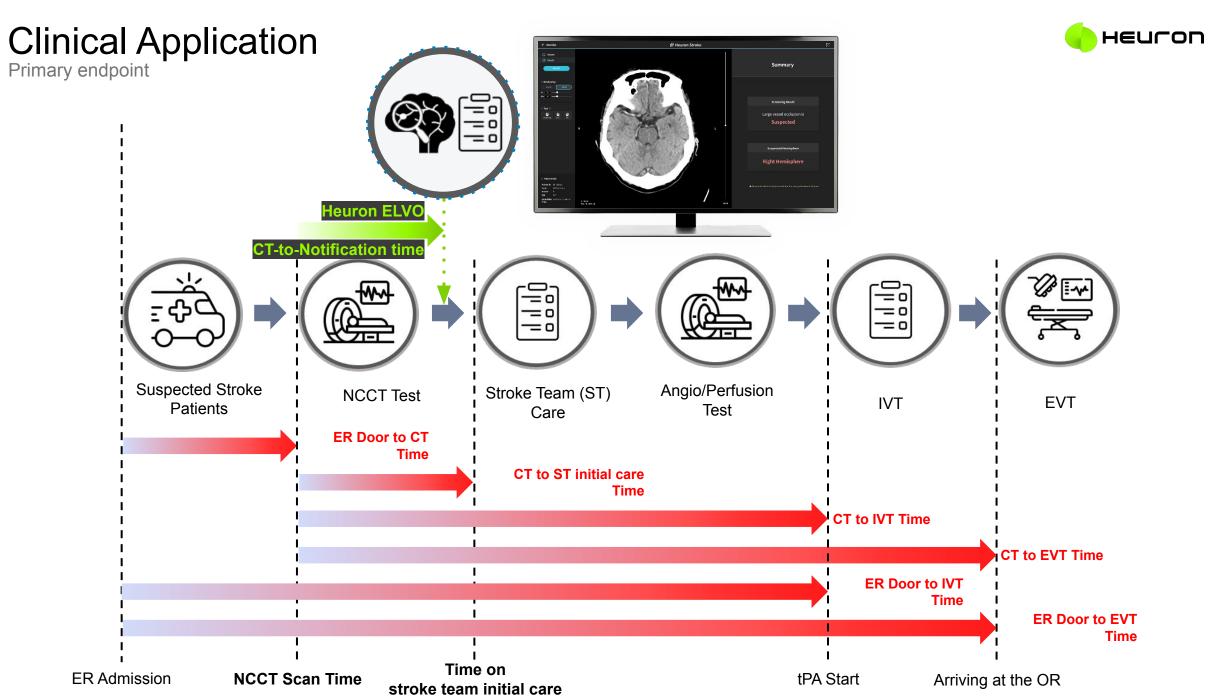

Retrospective & Prospective observation study in single thrombectomy capable stroke center

#### Objective

To compare whether the treatment time could be reduced when an AI supporting system was used

#### Study design


Single-center, retrospective-prospective observational study




## Flowchart of study Inclusion criteria



- (1) Aged > 19
- (2) Patients suspected of stroke who visited the emergency room and finally diagnosed with acute stroke.
- (3) Performed Mechanical Thrombectomy or receiving tPA (tissue Plasminogen Activator).





## Clinical Application - Results

Total cases [Pre-Al (RS): 82 cases, Post-Al (PS): 48 cases]



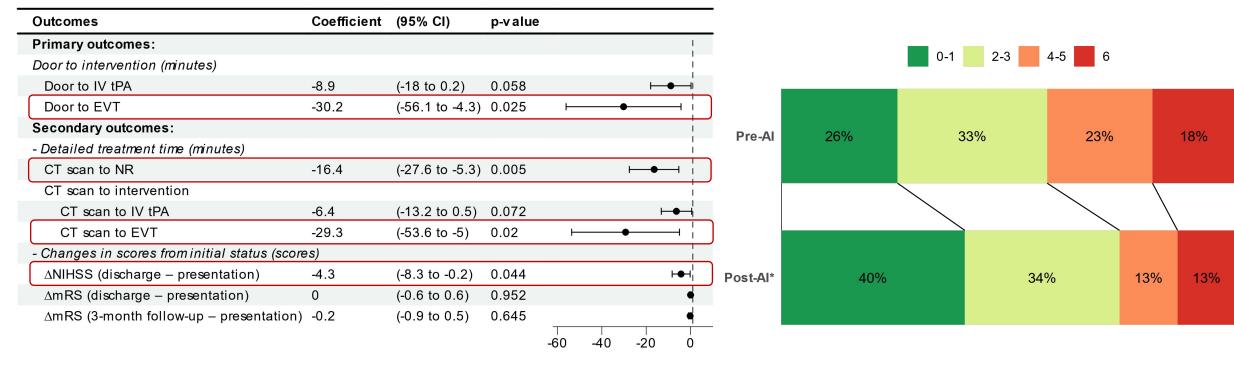



Figure 1. Estimated coefficients of the use of the Al-based stroke detection system using a multivariate linear regression model

Adjustments were made for age (10-year increments), sex, the number of comorbidities, NIHSS at presentation, and clot location.

Abbreviations: CI, Confidence Intervals; CT, Computed Tomography; NR, Neurologist consultation; tPA, tissue Plasminogen Activator; EVT, Endovascular Therapy; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale.

Figure S2. Percentages (%) of mRS at 3-month follow-up

\* One participant in the post-Al cohort was excluded in this figure due to missing information for the mRS score at the 3-month follow-up.

#### Conclusion



- After utilizing the AI solution, the time from CT imaging to the stroke team's initial care and to IVT or EVT were reduced compared to before the application.
- In EVT case, good outcome which was checked 3 months after EVT (mRS 3-months) were increased ratiometrically in the AI supported group.
- Further large-scale evaluation will be needed in multiple-centers.
- Although confirmation through additional validation is required, Heuron StroCare Suite<sup>™</sup> ELVO will be a
  useful tool for clinicians to make fast decision, especially, it will be valuable in remote regions where clinical
  expert may be limited.



# THANK YOU

https://iheuron.com