ITAPA 2021 9 November 2021

HPC and quantum technologies as drivers of innovation and the digital transition

Gustav Kalbe

Head of Unit – High performance Computing & Quantum Technologies

DG CNECT - European Commission

HPC is strategic: transforming big scientific, industrial and societal challenges into innovation and business opportunities!

Strategic tool for Science

Personalised health

Drug discovery

Genomics

Drug design

Climate change

Strategic value for Industry

Wind plant modelling

Aerodynamics & structural analysis

Oil &Gas exploration

Pharmaceutics

National security and defence

Cybersecurity

luclear reactor simulations

complex encryption technologies

Role of supercomputers in the pandemics

- Planning and forecasting; support containment measures with scenario buildings and simulations, evaluate post- epidemic scenarios
- Dramatically accelerated drug discovery: Excalate4CoV
 - EU supported powerful supercomputing platform to virtually analyse hundreds of billions of molecules against Covid-19 virus
 - Discovery of generic drug (*Raloxifene*) for earlier stages of Covid 19 disease; now in clinical trials
 - Other promising molecules were identified and are undergoing biological testing
- Supercomputers in medicine; cancer, human digital twin, personalised medicine

Why do we need Exascale Performance?

1.00k-00 3.00k-04 4.00k-04 -1.10k-00 1.80k-00

First (3.F)

Short (3.F)

Short

full aircraft simulation

Cancer Analytics

Earth models

cell-specific interventions: Mapping genetic susceptibility to cancer and its outcomes; intracellular molecular signaling in complex mutational backgrounds; combine genetic, genomic, and clinical data

Full aircraft: real time virtual assembling and testing of millions of components from thousands of suppliers

Earth models: next challenge is to simulate at the 1 km² scale to accurate predictions of climate change

Main drivers for HPC strategy in the EU

- EU investments are not at the level of its economic importance
- HPC applications are key contributors to the digitisation of industrial sectors (~53% of the Union's GDP)
- Exponential growth of data and computing
- Exascale performance and convergence in computing continuum
- Quantum computing technologies
- No EU processor technology in the top 500 supercomputers

HPC in Top500 (June 2021)

Number of supercomputers

Computing Power [Pflops]

EuroHPC renewed mission 2021-2027

A legal and funding agency

- 29 Participating States (MS + NO, IS) + EU +
 2 Private Members (ETP4HPC & BDVA)
- Budget: 7 B€ (EU + PS + In-kind Private Members)

- Infrastructure HPC, quantum / Federation hyperconnected
- Technologies systems and its supply chain
- Applications optimised for the systems
- Widening support climate neutrality and digital leadership transitions

Infrastructure - HPC & Quantum

- (pre- and post-) Exascale supercomputers
- Quantum Computing
- Industrial-grade supercomputers

indicative

Accelerators

	2019 & 2020	2021	2022	2023	2024	2025	2026	2027
HPC Infrastructure	3 pre-exascale + 5 petascale systems	Several mid-range, pre-exascale and 2 exascale systems				exascale and post-exascale HPC systems		
Quantum Infrastructure	Pilot Quantum simulators interfacing with HPC systems (100+ Quantum units)		QSim (NI with Ba	nputer/ ulators SQ) usic HPC	QCom QSimu (NIS with Fu	Prototype QComputers fitted with Err		puters th Error ion and

Strengthening the HPC Ecosystem Technologies, Applications, Widening

Technologies for EU's strategic autonomy

- HW and SW and system integration, energy-efficiency
- Low-power (EPI/ARM, RISC-V), OpenSW Stack
- Algorithms, software technologies and tools
- Emerging computing paradigms and interconnection/integration with HPC systems

Applications for Excellence & Leadership

- HPC codes & applications for extreme computing and data (AI, HPDA, cloud, etc.) Digital twins
- Centres of Excellence in HPC applications
- Code Industrialisation and deployment
- Large-scale HPC-enabled industrial pilots and test-beds

- Industrial access and use of HPC infrastructure
- Capabilities and skills in HPC/Quantum/Data
- National Competence Centres
- EU industrial users in HPC

QT Initiatives of the Union

